
14-1

Chapter 14 Application of ASCII File Output Function

 The FBs-PLC's ASCII file output function allows the PLC to directly drive ASCII output devices such as printers and
terminals, and let them print or display English document data or display screens such as production reports, materials
details and warning messages. For application of the ASCII file output function, it is necessary to edit, the ASCII file data
to be output must be edited to fit the required format of the FBs-PLC FUN 94 (ASCWR) instruction. Then using this
instruction, it will be sent out via port 1 to the ASCII output device connected with port 1.

 14.1 Format of ASCII File Data

 ASCII file data may be divided into fixed, unchanging background file data and dynamically changing variable data.
The background file data may be in English characters, numerals, symbols, graphs, etc, and the variable data can only be
printed out as binary, decimal, or hexadecimal numeric value data.

 ASCII code is a byte length code, which has a total of 256 combinations. Of these, the first 128 (0-127) are fairly
clearly defined and are used by most of the ASCII peripherals. For codes greater than 128 each manufacturer has
different definitions and graphics and there are no uniform specifications. FBs-PLC designed the FUN 94 (ASCWR)
instruction to be solely responsible for transmission, and not for editing. This work is done by the ASCII editor of the
WinProladder software package. Below is the editing command format adopted by the WinProladder software package
editor.

 1. Basic command Symbols

● ／ Linefeed

 A line slanting down from right to left means that no matter where the printing is up to, if this symbol is
encountered, then the printing head or the terminal display will move to the beginning (the very left) of the next line
and go on printing or displaying from that point. A series of "/" will create a succession of linefeeds (one "/" will cause
one linefeed) .

● ＼ Pagefeed

 A line slanting down from left to right means that when this symbol is encountered the printing head or the
terminal display will move to the beginning (top left hand corner) of the next page, and continue printing or displaying
from that point. A series of "\" will create a succession of pagefeeds. (One "\" will cause one pagefeed).

● ， Comma

 Used to separate statements in the file data. All the data included between two commas is a complete and
executable statement (must not be used for beginning and end of file). Note that although the shape of a comma is
the same as the shape of a single quotation mark, their positions are different (the comma is in a position near the
center of the letter, while the single quotation mark is near the top right corner). The function meaning that they
represent is completely different. Please refer to Item 2, background data format - statements.

● END File end

 At the end of the ASCII file END is added to show that the ASCII file is finished.

14-2

 2. Background Data Format

，M X N N1 N N2………，

Repeat ASCII code（N）

or
，M X ' A B C D E F G H I J K '，

Repeat tangible ASCII code

● MX:
Represents the number of repeats. M can be 1 to 999. The ASCWR instruction can send out M times successively all
the hexadecimal ASCII code or tangible ASCII code data contained between X and the first comma (,). If there is no
data after X (ie, the comma comes directly after X), then the ASCWR instruction will send out M successive space
codes. If you only have to send out the ASCII code or the tangible ASCII code once, then MX can be discarded.

● ASCII code data format: This data format has an N two-digit hexadecimal value. Every two adjoining hexadecimal
numerals starting from the right hand side of X will be regarded as an ASCII code. NN can be any ASCII code,
including tangible or intangible ASCII code such as English characters, numeric symbols or control codes. However,
its main use is as a special tangible code for control codes which cannot be represented by tangible character fonts or
cannot find a font or symbol on the WinProladder ASCII editor. For tangible characters or symbols that can be directly
represented on the ASCII editor by tangible keys, it should be more convenient to use the original printing out format.
For example, if you want to print out the character "A", with the original printing method you can type A via the
keyboard. But if you want to use ASCII code, you must check the table on which "A" is represented by 41 H, and then
enter 41. It is obviously a lot less convenient.

● Original printing out tangible ASCII code data format: What is enclosed within two single quotation marks' ', can only
be tangible ASCII code such as English characters, numerals, symbols, and graphics (characters that can be found
on or input via the ASCII editor keyboard). The ASCWR instruction will faithfully print out all the characters that are
contained in ' ', so if you need to print out a single quotation mark itself, you must have two successive single
quotation marks. For example:

'I''M A BOY' will be printed out as I' M A BOY

If the graphics or symbols of the ASCII output device cannot be found on the ASCII editor keyboard, then you naturally
are unable to do input using this format. In such a case you can check the ASCII code for that symbol or graphic, and use
ASCII code to input and print out.

 3. Variable Data Format

，"8 . 2 R 0 D"，

 format code
 variable register
 digits after the decimal point

 total number of variables printed out

A data statement within two double quotation marks " ", is used to specify the register address of variable data, and what
format or format code it will be printed out .

● Total number of variables printed out: In this example, "8" are used to print out the reserved 8 digit columns of the
variable (R0) numeric value (including negative signs). If the variable value is larger than the total number of printed
out digits then the high digit will be cut out. If the number of digits is insufficient, the remaining positions will be
occupied by spaces.

● Digits after the decimal point: The number of digits after the decimal point within the total number of digits of the
variable. In this example, in a total number of 8 digits, there are 2 places after the decimal point. The decimal point
symbol "." itself occupies one position so the integer will remain 5 digits.

14-3

● Variable register: Can be R, D,WX, WY, etc, of a 16-bit register, or DR,DD,DWX, DWY, etc, of a 32-bit register. The
contents of these registers can be retrieved and printed out using the format and format code specified by the
contents of " " .

● Format code: Can use hexadecimal H, decimal D or binary B format for printing out (when format code is not specified,
it will be decimal - therefore D can be omitted).

This example assumes that the content value of R0 is -32768. In the 8.2 format, the print out result is

 −3 2 7 . 6 8

If the format changes from 8.2 to 5.1 then the print out result changes to

2 7 6 . 8

 14.2 Application Examples of ASCII File Output

 The file data print out will start from the top left hand corner of each page. It will print from left to right with lines
going from top to bottom (please refer to the format in the diagram below). When the final character in a line is reached
(this varies according to the output device - a printer can have 80 characters or 132 characters), the printer will
automatically jump to the start (left-hand side) of the next line. If it has not yet printed to the final character, but
encounters the linefeed command (/) or the page feed command (\), then it will jump to the start of the next line or the
next page, and start printing from that point.

 Suppose that the production statistics table for the manufacturing division of a certain company has the following
format. This can be used as an example to explain the editing and printing out of its ASCII file data.

┌─
↓

 ← 28 spaces → PRODUCTION REPORT

 ==================
 ←52 spaces ... →DATE: 1/20/99

←... .16 spaces.. .. → TOTAL NUMBER （A）： 1000 PCS

 NUMBER OF YIELD （B）： 983 PCS

 NUMBER OF REPAIR （C）： 17 PCS

 STANDARD TIME （D）： 8.5 MIN／PCS

 TOTAL WORKING TIME （E）： 8500 MIN

 ACTUAL WORKING TIME （F）： 9190 MIN

 EFFICIENCY （G）： 92.49 ％

 ←… … … 22 spaces… … … →REMARK: A×D＝E，E／F＝G

14-4

 Before editing this file, you must first tell the file editor starting from which register within PLC the file to be edited
shall be stored. When editing the file data, you must differentiate whether the file data to be edited (printed out) is fixed
background data or variable data. The background data can be input using ASCII characters or symbol graphic of the
original print out format (using what is contained inside ' '), or it can directly use the ASCII code of its character or symbol
graphics. As for the variable data section, because it is stored in registers (so as long as the variable value changes, the
print out numerical value will change with it), the print out message must contain the register number and print out format,
such as number of characters, digits after the decimal point etc, as well as the format code that is used for the print out
(contained inside " "). In the example in the table above, the year, month, day data and the total number (A) to efficiency
(G) figures are all variable data. It assumes that the year, month, day data accesses the year, month, day registers
(R4133 to R4131) within the real time clock register RTCR. R0 stores the total number (A), R1 stores the number of yield
(B), etc, and R6 stores the efficiency (G) value. Below is the ASCII file data for this statistical table example:

///,28X,'PRODUCTION REPORT',/,28X,'==================', /,
52X,'Date:',"2R4132",'/',"2R4131",'/',"2R4133",//,16X,'TOTAL NUMBER
(A) :',"10R0",' PCS',//,16X, 'NUMBER OF YIELD (B) :' , "10R1",'
PCS',//,16X,'NUMBER TO REPAIR (C) :',"10R2",' PCS',//,16X,'STANDARD TIME
(D) :',"10.1R3",' MIN/PCS',//,16X,'TOTAL WORKING TIME (E) :',"10R4",'
MIN',//,16X,'ACTUAL WORKING TIME(F) :',"10R5",' MIN',//,16X,'EFFICIENCY
(G) :' ," 10.2R6",' %',/////,22X,'REMARK: AXD=E, E/F=G',END

 * : In the above example ' ================== ' can be replaced by 18X'=' or 18X3D.

 During the process of file output, when the output reaches variable data, the CPU will retrieve and do output with the
numerical values at that time of the register whose address are contained within the " ". Therefore, if a variable is printed
out both at the beginning and end of a file, a different numerical value may be obtained (when it has printed to halfway the
register value changes).

 After the file editing has been completed, the FUN94 instruction can be used to print out its background and
dynamic data. If this file is edited (stored) starting from R1000, then when it is outputting, S must be specified as R1000
before there can be an accurate output, as seen in the program example in the diagram below left. Supposing that the
numerical value of the variable register is as shown in the diagram below right, then when X1 and X2 are 0, and X0 goes
from 0 to 1, this instruction will print out the statistical table from the previous page, from Port 1 of PLC.

R4133 =82 R2 =17
R4132 =12 R3 =85
R4131 =00 R4 =8500
R0 =1000 R5 =9190
R1 =983 R6 =9249

